The 2017 Winter Weather Experiment: Results and Verification Methods

Benjamin Albright^{1,3}, Sarah Perfater^{2,3}, Mike Bodner³, and James Nelson³

Experimental Overview

- The 2017 Winter Weather Experiment (WWE) took place for four weeks: January 17 – February 17, 2017.
- 28 participants with diverse backgrounds:
 - Various WFOs, EMC, MDL, STI, AFS, ESRL, DTC, SPC, 3 different universities.
- Experiment activities:
 - Day 1 (18-12 UTC) Probabilistic Hourly Snowfall Rate forecast.
 - Day 2 (12-12 UTC) Deterministic Snow/Ice CONUS forecast.
 - Day 2 (12-12 UTC) Winter Weather Watches/Alerts.
 - Subjective evaluation of model guidance and forecasts.

VERIFICATION RESOURCES

WPC Stage IV/RAP Analysis

- Components:
 - Hourly Stage IV QPE.
 - Hourly 13 km RAP initialization fields.
- Uses WPC algorithm to determine PTYPE.
 - Checks for freezing temperatures at 925, 850, and 700 hPA.
 - 2 m temperatures used to differentiate rain/freezing rain.
- 10:1 SLR applied for areas identified as snow.
- 2:1 ratio applied for sleet.
- Used to verify:
 - Hourly probabilistic snowfall rate forecast.
 - Freezing rain.
 - WPC joint probabilities.
 - WPC Winter Weather Alerts.

Stage IV/RAP Analysis hourly snow verification valid at 1400Z 02/09/17.

WPC Stage IV/RAP Analysis

 Problems encountered with the analysis:

- No hourly Stage IV QPE data received from the Northwest River Forecast Center (RFC) or the California-Nevada RFC.
 - Leads to no data in those regions.
 - These areas experienced extensive winter weather during this year's experiment and hourly rate forecasts were created but were unable to be verified.
- 2. The 10:1 Snow-to-Liquid Ratio (SLR).
 - Participants questioned whether a 10:1 SLR was the best way to determine snowfall amounts, especially for a few colder events in New England and lake-effect events.

NOHRSC National Snowfall Analysis Version 1 and 2

- Version 1:
 - Used two-day qualitycontrolled 24 hour 1200 UTC NOHRSC snowfall analysis.
 - Data sources include:
 - All possible observation networks (e.g. COOP and CoCoRaHS).
 - A spatial interpolation of these observations is performed via a fixed, Barnes 2-pass, method with fixed interpolation parameters.

- Version 2:
 - Began running early January 2017 in preexperiment/nonoperational mode.
 - Some changes include:
 - Improvements to automatic quality control.
 - Inclusion of bias-corrected first-guess field based on aggregated HRRR water equivalent snow depth.
 - Improved SLR.

NOHRSC National Snowfall Analysis Version 1 and 2

- Version 2 showed tremendous promise over the Western United States.
- Was used during the experiment for snowfall verification for cases in the West.

Satellite-based Snowfall Rate (SFR) Algorithm

- Evaluated in the experiment as a viable verification resource for snowfall rate forecasts.
- The SFR output was compared against the Stage IV/RAP Analysis:
 - Where the Stage IV/RAP Analysis had data.
 - When a satellite pass captured areas of snowfall.
- Detects snowfall and determines intensity using 5 polar orbiting satellites and NWP data as a last screening step.
- Upper limit of 2 inches per hour from the SFR.
- The SFR does not provide reliable readings when temperatures are below 7°F, thus those areas are masked out in the display.

Satellite-based Snowfall Rate Algorithm

- Average subjective score from participants 5.6/10.
- Tends to miss lake effect events because snow is too shallow for the microwave sensor to sense.
- Areas along edge were sometimes distorted due to limb effect from imager sweep.
- Overall, participants agreed it would be useful to have as real-time observations in areas of poor radar coverage and lack of ground observations.

Stage IV/RAP Analysis (left) and SFR Algorithm (right) valid at 14Z 02/09/17.

WWE FORECASTS

Day 1 Probabilistic Hourly Snowfall Rate Forecast (18-12 UTC)

- Each day participants chose:
 - Threshold 0.5/1/2 inches of snow.
 - A limited geographic area to forecast within.
 - Probability contours of 25/50/75%.
 - A time interval ranging from 3-18 hours.

Example probabilistic hourly snowfall rate forecast overlaid with verification.

Day 1 Probabilistic Hourly Snowfall Rate Forecast (18-12 UTC)

- Subjective scores from the participants:
 - Mean = 6.5
 - Median = 5.0
 - St. Dev = 1.7
- Forecasts were challenging to verify out West for reasons mentioned earlier (slide 5).
- Participants most common critiques:
 - Forecast too confident based on verification.
 - Probabilities too high for chosen threshold.

Box plot of probabilistic hourly snowfall rate subjective results.

Hourly snowfall rate subjective results score distribution.

Day 2 Deterministic 24 HR Snow and Ice Forecast

- Created Day 2 (12-12 UTC) deterministic forecasts over the CONUS:
 - Snow → 1, 2, 4, 8, 12,
 20 inches and higher
 - Ice → .01, .10, .25, >=0.5 inch

Day 2 Deterministic 24 HR Snow and Ice Forecast

- Day 2 Snow Forecast:
 - Mean \rightarrow 5.9
 - Median \rightarrow 5.9
 - St. Dev → 1.3
- Day 2 Ice Forecast:
 - Mean \rightarrow 6.0
 - Median \rightarrow 6.0
 - St. Dev \rightarrow 2
- Very difficult to verify freezing rain.
- Common criticism of snowfall forecasts was that amounts were almost always underdone.

Box plot of Day 2 deterministic ice forecast subjective results.

Day 2 Winter Storm Watches/Alerts

- First time issuing experimental Winter Storm Watches from National Center.
- Watches (24 hours) were based on Day 2 deterministic forecast, WFO watch/warning criteria, and WPC Watch Collaborator.
- Alerts (6-24 hours) based on WPC developed joint probability tools and other guidance.
 - Tried to convey impacts not possible with traditional 24 hour watches.

Example of criteria-based Winter Storm Watch issued on 02/08/17 valid at 12Z 02/10/17.

Day 2 Winter Storm Watches

- To verify criteria-based watches, NOHRSCv1/2 was compared to WFO warning criteria.
- The watches generally captured most events, however spatial extent of the watches was often too conservative or missed marginal events.
- Questions also arose as to how a National Center would handle small-scale areas, especially out west, and workload.

Criteria-based Winter Storm Watch subjective results score distribution.

Day 2 Winter Weather Alerts

- Relied heavily on Stage IV/RAP Analysis for sub-24 hour snowfall/ice, so western areas were difficult to verify.
- Generally, participants liked the added flexibility of issuing an alert for impactful events in a timeframe less than 24 hours.
- Alerts also had same issues as the watches where the spatial extent could have been larger.

Example of Winter Weather Alert valid at 12Z 02/02/17.

Conclusions

- Hourly probabilistic snowfall rate forecast successful.
 - Second year testing.
 - Changed/improved model data this year.
 - Plan to make guidance available to forecasters.
- Day 2 deterministic snow forecasts were often underdone but forecasters added value in areas out west where modeled amounts were often low.
- Successful first test of issuing criteria-based Winter Storm Watches from a National Center.
 - Gathered good feedback on challenges that will need to be addressed moving forward.
- Winter Weather Alerts popular among participants due to the flexibility they provided, such as less than 24-hours in length and highlighting specific impacts.
 - Difficult to verify to see how effective the alerts actually were.

Observational Conclusions

Verification:

- 1. WPC Stage IV/RAP Analysis was the only option for sub-24 hour snowfall amounts.
 - Had issues in two western RFCs that do not provide hourly QPE.
 - 10:1 SLR questioned.
 - Need a better/more reliable way to verify less than 24 hour snowfall amounts.
- NOHRSCv1 extremely inadequate for verifying snowfall accumulations out west.
 - Version 2 showed tremendous promise, especially in the west, and has since transitioned to "prototype data" stage as of March 15, 2017.
- 3. Freezing rain verification remains extremely difficult.
- 4. The satellite SFR algorithm showed promise in the ability to provide snowfall rate information in areas of poor radar coverage.

Day 1 Probabilistic Hourly Snowfall Rate Forecast (18-12 UTC) Featured Guidance

- HRRRv3/NAMv4 hourly snowfall accumulation
- NAMv4 max hourly snowfall rate
- HRRR-TLE hourly snowfall rate probability
- NCAR Ensemble hourly snowfall rate probability

NAMv4 Max Hourly Snowfall Rate valid at 08Z 01/07/17.

Day 2 Deterministic 24 HR Snow and Ice Forecast Featured Guidance

- WPC Experimental Implicit PWPF
- WPC Operational PWPF
- WPC Winter Weather
 5km Ensemble
- WPC Implicit Blend
- NAMv4

WPC Winter Weather 5 km Ensemble 24 hour Day 2 snowfall forecast valid at 01/19/17.

Day 2 Winter Storm Watches/Alerts Featured Guidance

- WPC Joint Probabilities
- WPC Watch Collaborator
- WPC Watch
 Collaborator Trend
 Tools
- Winter Storm
 Severity Index

WPC Joint Probability of > 2 inches of snow and > 15 mph winds in a 6 hour period valid 18Z 11/18/16.